
Light Graffiti video effect optimisation

Simon A. Eugster

Department of Computer Science

ETH Zürich

Zürich, Switzerland

ABSTRACT

This paper describes optimisation steps for the Light Graffiti

video effect which simulates long-time exposure in post-

processing. Faster processing of video frames allows more

fluent video editing and rendering; finally after optimising a

maximum speedup of 10× is achieved.

1. INTRODUCTION

This section explains what Light Graffiti is and discusses

previous work.

Motivation. Light Graffiti, or Light Painting, is a term

commonly used for «painting» with light sources while pho-

tographing with long-time exposure: The sensor accumu-

lates the light from the light source, and the patterns drawn

stay on the final picture.

For video this approach does not work since the frame

rate gives a hard lower bound for the shutter speed: While

a photograph can be exposed for several minutes, allowing

the light painting artist to draw whole landscapes, a video

with a frame rate of 24 fps, as used in cinema, can expose

each frame for at most 1

24
s – so the only option would be to

do it in post.

As of 2011 I found a video[1] that did just this in hard-

ware, and another guy who used an additional camera with

long-time exposure (i.e. the photograph served as an over-

lay that was uncovered by and by)[2].

I then started writing my own Light Graffiti effect, which

was the first publicly available video effect (and still is, as

of today).

The effect is rather slow to use while editing since it

involves expensive computations. The goal therefore is to

make it run faster to allow more fluent editing.

Related work. The original implementation of the Light

Graffiti algorithm is described on [3] and is available via

http://code.dyne.org/frei0r/.

The optimised version of the effect is up to 10 times

faster. The optimisations will be described in this paper.

2. BACKGROUND: FUNCTIONALITY

This section describes how the Light Graffiti algorithm works,

and explains what the difficulties are.

Extracting light from an image sounds easy: Light is

bright, so we can simply use a threshold to decide between

light and the rest of the image (3 · 255− (r+ g + b) < k).1

This works fine for dark environments – which usually

they are not! On the street by night there are street lights

in the background, or another object in the image may look

close to white for the camera. So the sensitivity would have

to be decreased (to e.g. k = 10) in order to not match those.

Then, however, coloured lights, like a light blue one

with r = 181, g = 220, b = 251, fail to be detected with

765− (r + g + b) = 115.

My algorithm additionally calculates the differences∆r,

∆g, ∆b to the unlighted background, similar to a temporal

derivative. Additional thresholds for

diffSum =
∑

(∆r,∆g,∆b) (1)

diffMax = max(∆r,∆g,∆b) (2)

allow to precisely detect light.

The light itself is stored in a float light mask which

can be dimmed over time linearly or with a sine function

(which looks more natural). It allows values much greater

than 1 (the uchar pixel values get normalized to [0 . . . 1]
before they are added to the light mask) to simulate overex-

posure: A light source staying in place for some time leaves

a bright spot that does not faint immediately but only after

a while. The overexposure reduction option allows to avoid

extreme values by applying a log function.

Finally the saturation of lights can be increased when

they are painted back on the input image as coloured lights

tend to lose their colour when fading.

1Colours for red, green, and blue lie in the range {0 . . . 255}.

http://code.dyne.org/frei0r/


process(image) :
for all pixel ∈ image do

mean← update(mean, image)
lightmask← dim(lightmask)
if isLight(pixel,mean) then

mask ← mask + getLight(pixel,mean)
end if

if mask 6= 0 then

pixel← pixel+ lowerOexp(mask)
pixel← saturate(pixel)

end if

end for

dim(lightmask) :
if linear then

light← light ∗ (1 − x0)
else

light← pow(sin(light), x0)
end if

saturate(pixel)
pixel← pow(log(pixel)/x1, x2)

Cost Analysis. I’m considering two types of cost mea-

sures for the LightGraffiti code. The first one comes from

optimisation with the goal to run the program as performant

as possible; This is measured in Flops2 per cycle (Perfor-

mance) and, for memory traffic, Flops per Byte transferred

between CPU and RAM (Operational Intensity). The sec-

ond one is runtime which is of importance for the user as

editing should be as close to realtime as possible.

As the algorithm pseudo-code shows, the cost raises if

light is detected in the image and with increasing coverage

of the light mask.

I counted the flops and cycles with Intel’s VTune.

The complexity of the problem, as solved by this algo-

rithm, is O(n).

3. OPTIMISATIONS

This section will discuss the important optimisation steps.

Small ones which did not have a big effect or were already

implemented are not described here.

The original algorithm is abbreviated as OA, the differ-

ent optimisation steps numbered from O1 to O7.

Single Loop (O1–O4). The original algorithm used two

additional loops just for updating the mean image and dim-

ming the light mask. This avoided branching misprediction

at the cost of additional memory transfer – which was more

expensive. The size of both mask and mean image is, for

a FullHD frame of 1920 × 1080px, 24 MB.3 As this is far

larger than the L3 cache,4 they have to be read from and

written back to RAM, which gives a memory transfer over-

head of 96 MB per frame, with up to 96 MB transferred be-

tween RAM and CPU in the main loop.5

With the single loop at most 120 MB will be transferred;

less is not possible. The change in the Roofline Model (Fig-

2Floating-Point Operations
3For each pixel three floats with 4 Bytes each need to be stored.
4On the i7-2620M the L3 cache has a size of 4 MB.
524 MB for reading the input and writing the output image, plus reading

mean and light mask and possibly updating the light mask.

Light Mask coverage

t [ms]

LightGra�ti: Runtime of di�erent optimisation steps
FullHD images, 1920×1080, i7-2620M, Linux 64-bit, gcc 4.7

10 30 50 %

OA

O1–4

O6

O7

130

110

70

50

70

90

 

SSE

approx

original

linear dimming, no overexposure

Fig. 1. Runtime for the LightGraffiti effect with linear dim-

ming and with disabled overexposure reduction. These set-

tings do not use any pow/log functions and have around 60

flops per pixel.

Light Mask coverage

t [ms]

LightGrati: Runtime of dierent optimisation steps
FullHD images, 1920×1080, i7-2620M, Linux 64-bit, gcc 4.7

10 30 50 %

92

253

158

252

1700

O7 SSE

O6 approx

OA–O4

nonlinear dimming, overexposure reduction enabled

Fig. 2. Same measurement with nonlinear dimming and

overexposure reduction. This adds approximately 3 sin and

log functions (each) and 6 pow functions per pixel.



ure 3) indicates this as well (less Bytes per Flop), and the

runtime improved (Figure 1).

Approximative Functions (O6). So far the code used

a total of about 60 additions and multiplications per pixel.

Enabling nonlinear dimming of the light mask and overex-

posure reduction added 3 sine, 6 power, and 3 log func-

tions – and increased the runtime of the effect 15 times,

when comparing the plots for O1 in figures 1 and 2. It is

highly undesirable for a video effect to take 1.7 seconds for

processing a single frame; Although the effect is (so far)

applied in post-production only, this is nevertheless far too

long for comfortable editing.

Perfect vectorisation would only decrease the runtime

by a factor of at most 4 with SSE. Since the videos only

have 8-bit precision though, faster (but less accurate) func-

tions gave the same result (except for rounding errors, which

were negligible). The most costly function was the power

function which took 260 cycles less with the approximate

function [4], the logarithm function was 86 cycles faster

([5]).

Oddly I measured +100 ms per frame with the STL6 log

and +450 ms with the STL pow, but +1150 ms (instead of

the expected +550 ms) with both STL log and pow! The

only possible reason I could imagine is that pow ◦ log pol-

lutes the L1/L2 caches, causing more expensive L3 access7

which contributes to the additional 500 ms per frame (144 cy-

cles per pixel).

Manual taylor expansion for the sine function did not

give any speedup; it was generally the fastest of all those

functions and I stayed with the STL function.

Vectorisation (O7). The roofline model clearly shows

that the calculation is still compute bound (i.e. not bound by

memory traffic) on the i7.8 For the last optimisation I used

4-fold loop unrolling and vectorized the code, also using

approximate (vectorized) functions ([6, 7]). Although using

single precision instructions (meaning that I could process

4 floats at a time) the achieved speedup was not even 2×.

One reason is that I had to replace conditions by computa-

tion (compute the result of both branches and then blend

them together). The other reason is that the vectorized im-

plementations of the power and log functions are not iden-

tical.

Failed attempts. Since the code uses a lot of branches,

I tried replacing them with computations in the scalar case:

if a > 1 then

a← ax0

else

a← sin(a)
end if

6Standard Template Library, here from GCC 4.7
7L3 cache latency is between 12 and 38 cycles for the Sandy Bridge.
8In each cycle 8 Bytes can be transferred between CPU and RAM (if

accessed sequentially), which would permit up to 8 Flops per cycle.

2

1

½

flop

cycle

flop

B���

π  �����	
 � � flop/B

1½¼ 2

OA

O3

O7
O7 0.6

OA

v
�
v
�

�l���	 �l��l��

�n��l���	 �l��l��� �� 	��u��ln�

O3

LightGrati: Roofline Model

1 S�S l���	u��ln� �nu���� �� s flop

FullHD images, 1920×1080, i7-2620M, Linux 64-bit, gcc 4.7

� � � B���t����� ��� ↔ M�!"#�

Fig. 3. The roofline model indicates that the effect is in the

compute bound region, as the Sandy Bridge architecture can

transfer 8 Bytes per cycle between RAM and CPU. O1 to O4

have been collected in the point O3 since their positions did

not mentionably differ.

becomes

a← (a > 1)ax0 + (1− a > 1) sin(a)

The branch predictor proved to be better however, and the

computational overhead was too large.

Re-ordering computations for better ILP9 was not pos-

sible either since the computations depended too much on

each other.

For O7 I tried using a struct of vectors instead of a vector

of structs, as this can be read more easily by SSE instruc-

tions, but required an additional _MM_TRANSPOSE_PS;

this code did not give any improvements.

4. EXPERIMENTAL RESULTS

This section is so short that a summary would be just as

long as the section itself.

Experimental setup. The optimizations were tested

and measured on an Intel i7-2620M with disabled Speed-

Step and Powersave features to get stable timing results.

The L3 cache has 4 MB. The program was compiled with

gcc 4.7.0 with the flags-O3 -std=c++0x -march=corei7

-mavx -g -fno-tree-vectorize.

As input I used generated FullHD images (1920×1080px)

with the light mask covering between 0 and 50 % of the im-

age (this affects the amount of computation required).

Results. In the linear case (see Figure 1) the speedup

regarding runtime is constant at 2×, for nonlinear dimming

and overexposure reduction (Figure 2) it raises up to 10×.

It is still not realtime, but better than the original algorithm.

For the linear original algorithm I counted 36 additions

and 28 multiplications. In the ideal case, if additions and

9Instruction Level Parallelism



multiplications always appear alternately (and therefore can

be executed in parallel), the (theoretical) peak performance

is 1.55 flops per cycle. For the linear case OA reaches 24 %,

O3 reaches 35 %, and O7 reaches 27 % of peak.

The roofline model (Figure 3) shows an inconsistency:

The nonlinear O3 should be more to the right than O7 since

it still uses the slow STL functions. Since I have measured

the floating-point operations with VTune and they did not

differ between the linear and the nonlinear case in O3, I

assume that the STL functions use other operations (i.e. not

floating-point) which are not reflected in this model. The

model also shows that there is still room for improvement

for O7.

5. CONCLUSIONS

This video effect was not a typical optimisation problem

since, first, runtime was the most important criterion and,

secondly, the biggest effect was the result of using the ap-

proximate functions.

The roofline model suggests that after those changes

some classical optimisation can still be possible; i.e. for

example checking for data hazards to get better ILP.

Important to remember is that especially the power func-

tion takes hundreds of cycles (Intel’s ICC is said to be better

for those functions, but the video effect did not compile with

it). Approximate functions cannot be used everywhere due

to their limited precision, but 8-bit video processing seems

like a good place for them.

6. REFERENCES

[1] Tak+Pipslab, “Light painting – light graffiti –

ford kuga (table),” http://www.youtube.com/

watch?v=WVaxuIKPKvU, 2008.

[2] MARKO93, “Paris by light (legal lights graf-

fiti),” http://www.youtube.com/watch?

v=MZf2W3S7gV0, 2007.

[3] Simon A. Eugster, “Writing a light graffiti effect . . . ,”

http://kdenlive.org/users/granjow/

writing-light-graffiti-effect, 2011.

[4] Martin Ankerl, “Optimized approxi-

mative pow() in c / c++,” http://

martin.ankerl.com/2012/01/25/

optimized-approximative-pow-in-c-and-cpp/,

2012.

[5] Laurent, “Fast log() function,” http://www.

flipcode.com/archives/Fast_log_

Function.shtml.

[6] José Fonseca, “Fast sse2 pow: ta-

bles or polynomials?,” http://

jrfonseca.blogspot.ch/2008/09/

fast-sse2-pow-tables-or-polynomials.

html, 2008.

[7] zogzog, “Simple sse and sse2 (and now neon)

optimized sin, cos, log and exp,” http://

gruntthepeon.free.fr/ssemath/.

http://www.youtube.com/watch?v=WVaxuIKPKvU
http://www.youtube.com/watch?v=WVaxuIKPKvU
http://www.youtube.com/watch?v=MZf2W3S7gV0
http://www.youtube.com/watch?v=MZf2W3S7gV0
http://kdenlive.org/users/granjow/writing-light-graffiti-effect
http://kdenlive.org/users/granjow/writing-light-graffiti-effect
http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
http://www.flipcode.com/archives/Fast_log_Function.shtml
http://www.flipcode.com/archives/Fast_log_Function.shtml
http://www.flipcode.com/archives/Fast_log_Function.shtml
http://jrfonseca.blogspot.ch/2008/09/fast-sse2-pow-tables-or-polynomials.html
http://jrfonseca.blogspot.ch/2008/09/fast-sse2-pow-tables-or-polynomials.html
http://jrfonseca.blogspot.ch/2008/09/fast-sse2-pow-tables-or-polynomials.html
http://jrfonseca.blogspot.ch/2008/09/fast-sse2-pow-tables-or-polynomials.html
http://gruntthepeon.free.fr/ssemath/
http://gruntthepeon.free.fr/ssemath/

	 Introduction
	 Background:  Functionality
	 Optimisations
	 Experimental Results
	 Conclusions
	 References

